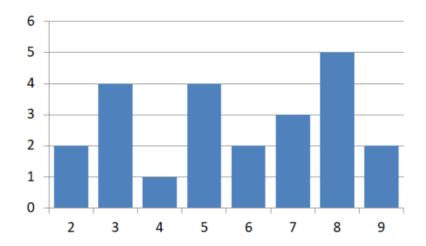
Московская олимпиада школьников по вероятности и статистике 27 января 2024 г.

8 класс. Ответы и решения

Задача 1. (**1 балл**) В кафе 23 пластиковых лотка с пирожными. На диаграмме показано, как распределены пирожные. На горизонтальной прямой показано количество пирожных, а на вертикальной — сколько лотков содержит именно такое число пирожных. Найдите медиану величины *«число пирожных в лотке»*.



Ответ: 6.

Решение. Всего в массиве данных 23 числа. Упорядочим их по возрастанию: два числа 2, четыре числа 3 и так далее. На 12-м месте стоит число 6. Оно и является медианой.

Задача 2 (1 балл). В коробке много конфет тёмного шоколада и ещё больше конфет белого шоколада. Четыре случайные конфеты случайным образом поделили между Валей и Колей поровну. Известно, что вероятность того, что у обоих окажутся по одной тёмной и одной белой конфете, равна α , а вероятность того, что хотя бы у одного из них окажутся тёмная и белая конфеты, равна β . Найдите вероятность того, что у Вали окажутся две конфеты одного цвета.

Otbet:
$$1-\frac{\alpha+\beta}{2}$$
.

Решение. Обозначим B и K события «у Вали разные конфеты» и «у Коли разные конфеты». Вероятности этих событий одинаковы в силу симметрии: P(B) = P(K).

Из равенства

$$P(B \cup K) = P(B) + P(K) - P(B \cap K)$$

получаем:

$$\beta = 2P(B) - \alpha$$
; $P(B) = \frac{\alpha + \beta}{2}$; $P(\overline{B}) = 1 - \frac{\alpha + \beta}{2}$.

Задача 3 (2 балла). У папы есть коробка, в которой лежат одинаковые по размеру шары разных цветов: красные, жёлтые и синие. Вова собирается вынуть из коробки случайный шар. Он спрашивает папу: «Какого цвета шар мне вероятнее всего попадётся?» Папа отвечает: «Синего». Вова переспрашивает: «Значит, вероятнее всего, что мне попадётся синий шар?» «Нет, вероятнее всего, что синий шар тебе не попадётся», — отвечает папа. Какое наименьшее количество шаров может быть в коробке, если папа всегда говорит правду? Авт. Геннадий Гусев, 6 класс

Ответ: 7.

Решение. Если шаров какого-то цвета нет (во время олимпиады были вопросы, может ли так быть), то указанная в условии ситуация невозможна. В коробке есть хотя бы по одному шару каждого цвета. Значит, синих шаров, по крайней мере, два.

Если синих шаров два, то желтых и красных должно быть по одному. Но в этом случае нарушается второе условие: вероятность вынуть синий шар оказывается не меньше, а равна вероятности вынуть не синий шар.

Если синих шаров три, то красных и желтых вместе должно быть хотя бы 4. Следовательно, наименьшее количество шаров не меньше чем 7.

Пример: три синих шара, два желтых и два красных удовлетворяют условию.

Задача 4 (2 балла). Кот Базилио предложил Буратино и Пьеро сыграть с ним в новую лотерею. Вначале Буратино и Пьеро вносят по 19 сольдо, а кот вносит 82 сольдо. Затем Буратино и Пьеро бросают по игральному кубику. Если число очков, выпавшее у Буратино, делится на число очков, выпавшее у Пьеро, то Буратино забирает свой выигрыш — в 20 раз больше сольдо, чем выходит в частном, а если не делится, то Буратино не получает ничего. Если число очков, выпавшее у Пьеро, делится на число очков, выпавшее у Буратино, то Пьеро забирает в 20 раз больше сольдо, чем выходит в частном, а если не делится, то не получает ничего. Деньги, оставшиеся после выплаты выигрышей Буратино и Пьеро, кот забирает себе. Кот утверждает, что для каждого из троих игроков вероятность получить больше, чем игрок внёс вначале, одинакова. Правда ли это?

Ответ: да.

Решение. Суммарный взнос равен 120 сольдо. Пусть Буратино выбросил n очков, а пьеро -k очков. Составим таблицу, в которой клетки соответствуют всем 36 возможным исходам бросков, а в клетках запишем выигрыши Буратино, Пьеро и Кота, разделив их наклонными чертами.

kn	1	2	3	4	5	6
1	20/20/80	40/0/80	60/0/60	80/0/40	100/0/20	120/0/0
2	0/40/80	20/20/80	0/0/120	40/0/80	0/0/120	60/0/60
3	0/60/60	0/0/120	20/20/80	0/0/120	0/0/120	40/0/80
4	0/80/40	0/40/80	0/0/120	20/20/80	0/0/120	0/0/120
5	0/100/20	0/0/120	0/0/120	0/0/120	20/20/80	0/0/120
6	0/120/0	0/60/60	0/40/80	0/0/120	0/0/120	20/20/80

Московская олимпиада школьников по вероятности и статистике 27 января 2024 г.

Оранжевым цветом отмечены исходы, в которых Буратино получил больше 19 сольдо, а зеленым — в которых кот получил больше, чем 82 сольдо. И тех, и других по 14. Следовательно, вероятности выигрыша Буратино и вероятность выигрыша кота одинаковы — по $\frac{14}{36} = \frac{7}{18}$. Вероятность выигрыша Пьеро такая же, поскольку Буратино и Пьеро в равных условиях.

Задача 5 (2 балла). В случайном опыте ровно 7 элементарных событий, и все они равновозможны. Пусть M — множество всех событий этого опыта, кроме невозможного (пустого) события. Сколько в множестве M существует пар различных независимых событий?

Ответ: 126.

Решение. Предположим, что события $A, B \in M$ независимы, что событию A благоприятствует a, событию B-b, а событию $A \cap B-c$ элементарных событий. Тогда выполняется равенство

$$\frac{a}{7} \cdot \frac{b}{7} = \frac{c}{7}$$
,

откуда ab=7c. Поскольку в множестве M нет пустого события, $1 \le a,b \le 7$. Число 7 простое, потому a или b равно 7. Пусть, для определенности, a=7, то есть событие A достоверное. Всего в множестве M ровно $2^7-1=127$ событий, включая A, поэтому в качестве B можно взять любое из 126 событий.

Задача 6 (3 балла). Валя слепила себе из пластилина несимметричный игральный кубик. Коля вырезал себе из дерева ещё более несимметричный кубик. Грани на кубиках пронумерованы. Валя и Коля бросали свои кубики и записывали частоты выпавших граней. Обнаружилось, что:

- Валя бросила кубик 100 раз, и у неё единица выпала 14 раз;
- Коля бросил кубик 20 раз, и единица выпала у него 7 раз;
- при всех n от 2 до 6 отношение частоты выпадения грани n к частоте выпадения

грани n-1 у Вали в точности в $\frac{n}{n-1}$ раз больше, чем это же отношение у Коли.

Найдите среднее арифметическое числа очков, выпавших у Коли.

Ответ: 2,5.

Решение. Пусть частоты выпадения граней у Вали равны $v_1,...,v_6$, а у Коли частоты граней равны $k_1,...,k_6$.

Тогда

$$\begin{split} \frac{v_2}{v_1} &= 2\frac{k_2}{k_1}\,,\,\text{откуда}\ v_2k_1 = 2v_1k_2\,,\\ \frac{v_3}{v_1} &= \frac{v_3}{v_2}\frac{v_2}{v_1} = \frac{3}{2}\frac{k_3}{k_2}\cdot 2\frac{k_2}{k_1} = 3\frac{k_3}{k_1}\,,\,\text{откуда}\ v_3k_1 = 3v_1k_3\,. \end{split}$$

Таким образом получим все равенства $v_n k_1 = n v_1 k_n$ при n=2,...,6 и сложим их почленно:

$$v_1(2k_2+3k_3+...+6k_6) = k_1(v_2+v_3+...+v_6).$$

Добавим к обеим частям v_1k_1 :

$$v_1(k_1 + 2k_2 + 3k_3 + ... + 6k_6) = k_1(v_1 + v_2 + v_3 + ... + v_6).$$

Среднее число очков, выпавших на кубике у Коли, равно

$$k_1 + 2k_2 + 3k_3 + \dots + 6k_6 = \frac{k_1}{v_1} (v_1 + v_2 + v_3 + \dots + v_6) = \frac{k_1}{v_1} = \frac{7}{20} : \frac{14}{100} = 2,5.$$

Примечание. Указанная в условии ситуация возможна. Пример в таблице.

Число очков	1	2	3	4	5	6
Валя	14	16	24	24	10	12
Коля	7	4	4	3	1	1

Авторы задач: Геннадий Гусев (6-й класс), Н.И.Сошитова, П.В.Семенов, А.В.Шкляев, И.Р.Высоцкий.