
Пригласительный тур XIII олимпиады по теории вероятностей и статистике для школьников

Ответы и решения

Вариант 1

1. а) $\frac{1}{80}$ (0,0125); б) 169 см. **2.** Например, -2, -1, 0, 6, 6, 21. **3.** 0,6. **4.** $3p^2(1-p)^4$. **5.** $\frac{18}{35}$. **6.** 6.92.

Если в конце лежит одна плитка поперек, то слева от нее все плитки образуют дорожку длиной n-1 фут.

Если в конце лежат две плитки вдоль, то слева от них все прочие плитки образуют дорожку длиной n-2 фута. Значит, всего различных укладок длиной n футов столько же, сколько укладов длиной n-1 фут и укладок длиной n-2 фута вместе.

Начнем с малых n . Укладок длиной 1 фут всего одна (одна плитка поперек). Укладок длиной 2 фута две: две плитки поперек или две плитки вдоль. Значит, укладок длиной 3 фута уже $1+2=3=f_4$, укладок длиной 4 фута всего $2+3=5=f_5$ и так далее: укладок длиной n всего f_{n+1} .

Критерии оценивания

Полное и верное доказательство	2 балла
Полным перечислением укладок получено не менее четырех первых значений 1, 2, 3, 5,	1 балл
Доказательство неверное либо отсутствует, нет перечисления всех вариантов укладки для четырех первых значений n .	0 баллов

8. Решение. Пусть правильные числа в таблице равны a, b, c и d. Рассмотрим события

 $A = \{ Ecmь кошка \}$ и $B = \{ Ecmь собака \}$.

	Есть собака	Нет собаки
Есть кошка	a	b
Нет кошки	С	d

Эти события независимы, только если доля «кошатников» среди «собачников» такая же, как и среди «не собачников», то есть условная вероятность события A при условии B равна вероятности события A при условии \overline{B} : $P(A|B) = P(A|\overline{B})$. Получаем $\frac{a}{a+c} = \frac{b}{b+d}$, откуда ad = bc.

Из-за случайной изменчивости данных это равенство может не быть точным, но должно выполняться хотя бы приблизительно. Предположим, что в отчете Ученого верны все числа, кроме a. Тогда a приблизительно (с округлением до целых) равняется

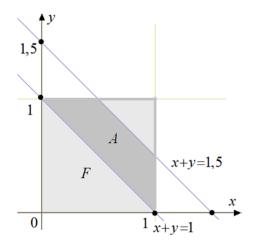
¹ Равенство ad = bc можно получить разными способами из условия независимости. Например, можно использовать равенство $P(A \cap B) = P(A) \cdot P(B)$.

 $\frac{bc}{d} = \frac{1110 \cdot 978}{121} \approx 8972$, а участников опроса примерно 8972 + 1110 + 978 + 121 = 11181. Это намного больше, чем число жителей в городе, поэтому такой вариант неправдоподобен.

Предположим, теперь что неверно число b . В этом случае $b \approx \frac{ad}{c} = \frac{765 \cdot 121}{978} \approx 95$, а всего респондентов примерно 765 + 95 + 978 + 121 = 1959, что намного меньше чем 3000. Аналогично, если неверно число c, то $c \approx \frac{ad}{b} = \frac{765 \cdot 121}{1110} \approx 83$, а общее число респондентов близко к 765 + 1110 + 83 + 121 = 2079, что тоже слишком мало.

Если ошибочное число d, то $d \approx \frac{bc}{a} = \frac{1110 \cdot 978}{765} \approx 1419$, а общее число участников опроса примерно равно 765 + 1110 + 978 + 1419 = 4272. Это возможно.

Ответ: примерно 4272 человека.


Примечание. Вместо приблизительных равенств можно использовать оценки с помощью неравенств.

Критерии оценивания

Решение полное и верное	2 балла
Ответ верный, но нет рассуждений, показывающих, что другие варианты неправдоподобны (например, имеется догадка, какое именно число неверное)	1 балл
Решение неверное либо отсутствует	0 баллов

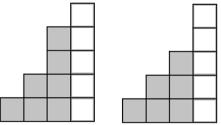
9. Решение. Предположим, что у Ольги Павловны осталось x л, а у Марии Петровны осталось y л варенья. Числа x и y случайно и независимо выбираются из интервала от 0 до 1. Будем считать, что выбирается случайная точка с координатами (x;y) из единичного квадрата F (см. рис.). Событие A «всего у ОП и МП осталось не менее чем 1 л, но менее чем 1,5 л варенья» записывается неравенством $1 \le x + y < 1,5$ и изображается трапецией, заключенной между прямыми x + y = 1 и x + y = 1,5. Тогда

$$P(A) = \frac{S_A}{S_F} = \frac{3}{8} = 0,375$$
.

Ответ: 0,375.

Примечание. Возможны другие способы решения.

Критерии опенивания


Решение полное и верное	3 балла
В решении содержатся верные рассуждения для отдельных случаев и сделан перебор этих случаев, для них применяется формула полной вероятности. При этом возможен неверный ответ	1 балл
Решение неверное либо отсутствует	0 баллов

Вариант 2

1. а) $\frac{1}{75}$ (0,0133); б) 165 см. **2.** Например, -5, -4, -3, 5, 5, 20. **3.** 0,35. **4.** $4p^3(1-p)^3$. **5.** $\frac{3}{35}$. **6.** 7,93.

7. Решение. Рассмотрим какую-нибудь готовую фигуру. В ней правый столбик выше предыдущего либо на один квадрат (рис. слева), либо на два квадрата (рис. справа).

В первом случае все столбики, кроме последнего, образуют фигуру, которая получена по тем же правилам и имеет высоту n-1.

Во втором случае все столбики, кроме последне- го, образуют фигуру, полученную по тем же правилам, но высота фигуры равна n-2. Значит, всего фигур высотой n ровно столько, сколько фигур высотой n-1 и фигур высотой n-2 вместе.

Начнем с малых n. Фигура высотой 1 ровно одна (один квадрат). Фигура высотой 2 тоже только одна: у нее два столбика, в которых 1 и 2 квадрата. Значит, фигур высотой 3 уже две: $1+1=2=f_3$, фигур высотой 4 всего $1+2=3=f_4$, и так далее: фигур высотой n всего f_n .

Критерии оценивания

Полное и верное доказательство	2 балла
Полным перечислением возможных фигур получено не менее четырех первых значений 1, 1, 2, 3	1 балл
Доказательство неверное, либо отсутствует, нет перечисления всех фигур для четырех первых значений n .	0 баллов

8. Решение. Пусть правильные числа в таблице равны a, b, c и d. Рассмотрим события

 $A = \{Ecmb \ \kappa apma\}$ и $B = \{Denaem \ nokynku \ в \ Интернете\}$. Эти события независимы, только если доля обладателей банковских карт среди интернет-покупателей такая же, как и среди тех, кто не делает покупки в интернете, то есть

	Есть	Нет
	карта	карты
Покупает в Интернете	а	b
Не покупает в Интернете	С	d

условная вероятность события A при условии B равна вероятности события A при усло-

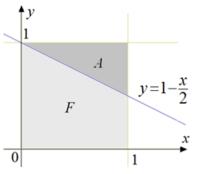
вии
$$\overline{B}$$
: $P(A|B) = P(A|\overline{B})$. Получаем $\frac{a}{a+b} = \frac{c}{c+d}$, откуда $ad = bc$.

Из-за случайной изменчивости данных это равенство может не быть точным, но должно выполняться хотя бы приблизительно. Предположим, что в отчете Ученого верны все числа, кроме a. Тогда число a должно приблизительно (с округлением до целых) равняться $\frac{bc}{d} = \frac{245 \cdot 1142}{535} \approx 523$, а количество респондентов будет приблизительно равно 523 + 1142 + 535 + 245 = 2445. Это намного больше чем 2000. Предположение неправдоподобно.

Предположим, теперь, что неверное число b. Тогда $b \approx \frac{ad}{c} = \frac{81 \cdot 535}{1142} \approx 38$, а общее число участников опроса близко к 1142 + 535 + 81 + 38 = 1796. Это возможно.

Если неверное число c, то $c \approx \frac{ad}{b} = \frac{81 \cdot 535}{245} \approx 177$, а общее число опрошенных приблизительно равняется 177 + 535 + 81 + 245 = 1038. Это слишком мало: по условию в выборке больше чем 1500 человек.

Если ошибочное число d , то $d \approx \frac{cb}{a} = \frac{1142 \cdot 245}{81} \approx 3454$, а общая численность выборки приблизительно 1142 + 245 + 81 + 3454 = 4922 . Это также неправдоподобно.


Ответ: примерно 1796 человек.

Примечание. Вместо приблизительных равенств можно использовать оценки с помощью неравенств.

Критерии оценивания

Решение полное и верное	2 балла
Ответ верный, но нет рассуждений, показывающих, что другие варианты неправдоподобны (например, имеется догадка, какое именно число неверное)	1 балл
Решение неверное либо отсутствует	0 баллов

9. Решение. Предположим, что у Марии Петровны осталось x л, а у Ольги Павловны осталось y л варенья. Числа x и y случайно и независимо выбираются из интервала от 0 до 1. Будем считать, что выбирается случайная точка с координатами (x;y) из единичного квадрата F (см. рис.). Когда Мария Петровна съела половину оставшегося y нее варенья, y нее осталось $\frac{x}{2}$ л варенья, Поэтому событие A «y ОП и МП вме-

сте не меньше 1 л» записывается неравенством $\frac{x}{2} + y \ge 1$ и изображается треугольником,

расположенным выше прямой $y = 1 - \frac{x}{2}$. Тогда

$$P(A) = \frac{S_A}{S_F} = \frac{1}{4} = 0,25.$$

Ответ: 0.25.

Примечание. Возможны другие способы решения.

Критерии опенивания

критерии оценивания	
Решение полное и верное	3 балла
В решении содержатся верные рассуждения для отдельных случаев и сделан перебор этих случаев, для них применяется формула полной вероятности. При этом возможен неверный ответ	1 балл
Решение неверное либо отсутствует	0 баллов