Пригласительный тур IX интернет-олимпиады по теории вероятностей и статистике. 26 ноября 2015 г.

Ответы, решения и критерии оценивания

Вариант 1

1. Задания с кратким ответом

Задание	Ответ
1	60
2	$\frac{11}{20}$ (или 0,55)
3	$\frac{2}{3}$
4	$\frac{5}{12}$
5	45 (или любое другое число от 38 до 52 включительно)
6	51

2. Задания с развернутым ответом

7. Решение. Пусть случайные величины ξ и η — сроки службы синей и красной лампочек соответственно. Срок службы фонарика равен наименьшей из этих величин. Ясно, что $\min(\xi,\eta) \le \xi$. Перейдём к математическим ожиданиям: $\operatorname{Emin}(\xi,\eta) \le \operatorname{E} \xi = 2$. Значит, математическое ожидание срока работы фонарика не больше 2 лет.

Ответ: ошибся.

Критерии оценивания	Балл
Решение полное и верное	2 балла
Утверждается, что срок службы прибора – ровно 2 года	1 балл
Решения нет, либо неверное, либо только ответ	0 баллов

8. Решение. Покажем от противного, что сделать такие монеты невозможно. Предположим, что чеканщикам это удалось. Пусть вероятность выпадения орла на первой монете равна p_1 , а на второй — p_2 . Тогда получаем:

$$(1-p_1)(1-p_2) = p_1p_2 = p_1(1-p_2) + p_2(1-p_1).$$

Из первого равенства: $1-p_1-p_2+p_1p_2=p_1p_2$, откуда $p_1+p_2=1$.

Тогда из второго равенства следует: $p_1p_2 = p_1^2 + p_2^2$. Следовательно,

$$p_1^2 - 2p_1p_2 + p_2^2 = -p_1p_2$$
; $(p_1 - p_2)^2 = -p_1p_2$.

В левой части равенства число неотрицательное, а в правой – отрицательное.

Ответ: не сможет.

Критерии оценивания	Балл
Полное и верное решение	3 балла
В решении предполагается, что монеты одинаковы, то есть $p_1 = p_2$, и в этом допущении решение верное	2 балла
Верно составлена система уравнений, но решение не доведено до конца или содержит ошибку	1 балл
Решения нет, либо неверное, либо только ответ	0 баллов

9. Решение. Способ **1.** Чётные броски принадлежат Б.Бонсу. Значит, Бонс выигрывает только тогда, когда общее число бросков, включая последний удачный, будет чётно. Вероятность выпадения шестёрки равна $\frac{1}{6}$. Вероятность противоположного события $\frac{5}{6}$. Значит, вероятность того, что всего будет сделано чётное число бросков, равна

$$\frac{5}{6} \cdot \frac{1}{6} + \frac{5}{6} \cdot \frac{1}{6} + \dots$$

Способ 2. Обозначим через p искомую вероятность события «Выиграл Б.Бонс». Это событие может получиться одним из двух способов:

- 1) В начале Дж.Сильвер выбросил не 6, а Б.Бонс тут же выбросил 6. Вероятность этого $\frac{5}{6} \cdot \frac{1}{6} = \frac{5}{36}$.
- 2) В первый раз и Сильвер, и Бонс оба выбросили не 6. После этого игра как бы начинается заново, и Б.Бонс побеждает в ней с вероятностью p. Вероятность такого развития событий $\frac{5}{6} \cdot \frac{5}{6} \cdot p = \frac{25}{36} p$.

Таким образом,
$$p = \frac{5}{36} + \frac{25}{36} p$$
, откуда $p = \frac{5}{11}$.

Ответ: $\frac{5}{11}$.

Критерии оценивания	Балл
Полное и верное решение	3 балла
Верно составлена сумма или уравнение для нахождения вероятности,	1 балл
о решение не завершено, либо содержит ошибку	
Решения нет, либо неверное, либо только ответ	0 баллов

Вариант 2

1. Задания с кратким ответом

Задание	Ответ
1	30
2	$\frac{7}{12}$
3	$\frac{1}{3}$
4	$\frac{7}{12}$
5	35 (или любое другое число от 27 до 43 включительно)
6	45

2. Задания с развернутым ответом

7. Решение. Пусть ξ и η — сроки службы синей и красной лампочек соответственно. Фонарик выходит из строя тогда, когда перегорела последняя лампочка, то есть срок службы фонарика равен наибольшей из величин ξ и η . Очевидно, $\max(\xi,\eta) \ge \eta$. Перейдём к математическим ожиданиям: $\operatorname{Emax}(\xi,\eta) \ge \operatorname{E} \eta = 4$. Значит, математическое ожидание срока службы фонарика не меньше четырех лет.

Ответ: ошибся.

Критерии оценивания	Балл
Решение полное и верное	2 балла
В решении утверждается, что средний срок – ровно 4 года	1 балл
Решения нет, либо неверное, либо только ответ	0 баллов

8. Решение. Покажем от противного, что сделать такие монеты невозможно. Предположим, что чеканщикам это удалось. Пусть вероятность выпадения орла на первой монете равна p_1 , а на второй — p_2 . Тогда получаем:

$$(1-p_1)(1-p_2) = p_1p_2 = p_1(1-p_2) + p_2(1-p_1).$$

Из первого равенства: $1 - p_1 - p_2 + p_1 p_2 = p_1 p_2$, откуда $p_1 + p_2 = 1$.

Тогда из второго равенства следует: $p_1p_2 = p_1^{\ 2} + p_2^{\ 2}$. Следовательно,

$$p_1^2 - 2p_1p_2 + p_2^2 = -p_1p_2$$
; $(p_1 - p_2)^2 = -p_1p_2$.

В левой части равенства число неотрицательное, а в правой – отрицательное. Противоречие.

Ответ: не сможет.

Критерии оценивания	Балл
Полное и верное решение	3 балла
В решении предполагается, что $p_1 = p_2$. В этом допущении решение верное	2 балла
Верно составлена система уравнений, но решение не доведено до конца или содержит ошибку	1 балл
Решения нет, либо неверное, либо только ответ	0 баллов

9. Решение. Способ 1. Сэм делает нечётные по счёту выстрелы. Значит, он выигрывает только тогда, когда общее число выстрелов, включая последний удачный, будет нечётно.

Вероятность попасть при одном выстреле равна $\frac{2}{5}$. Вероятность противоположного собы-

тия
$$\frac{3}{5}$$
. Значит, вероятность того, что всего будет сделано нечётное число бросков, равна
$$\frac{2}{5} + \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} + \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} + \dots$$

Способ 2. Обозначим через p искомую вероятность события «Попал Сэм». Это событие может случиться одним из двух способов:

- 1) Сэм сразу попал. Вероятность этого $\frac{2}{5}$.
- 2) Сэм и Билли промахнулись по разу. После этого соревнование как бы начинается заново, и Сэм побеждает с вероятностью p. Вероятность такого развития событий равна

$$\frac{3}{5} \cdot \frac{3}{5} \cdot p = \frac{9}{25} p .$$

Таким образом, $p = \frac{2}{5} + \frac{9}{25} p$, откуда $p = \frac{5}{8}$.

Otbet: $\frac{5}{9}$.

Критерии оценивания	Балл
Полное и верное решение	3 балла
Верно составлена сумма или уравнение для нахождения вероятности, но решение не завершено, либо содержит ошибку	1 балл
Решения нет, либо неверное, либо только ответ	0 баллов