И. ВЫСОЦКИЙ, г. Москва

Продолжение. Начало см. № 4–5, 7, 10 за 2023 г., № 1–4 за 2024 г.

ТЕМА: «ПРЕДСТАВЛЕНИЕ ДАННЫХ» сценарии уроков

Урок: «Случайная изменчивость»

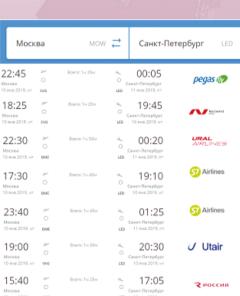
Оборудование: калькулятор.

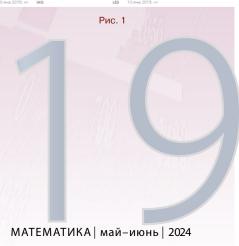
Цель урока: знакомство учащихся с понятием случайной изменчивости. У учащихся должно сложиться представление о случайной изменчивости величин и некоторых причинах случайной изменчивости.

Задача для повторения (устно). Юный математик Петя на праздники ездил с родителями на машине на дачу к бабушке. Дорога была долгая, и Петя от скуки начал подсчитывать цвета встречных машин. Результаты подсчетов в таблице.

Цвет машины	Количество
Черный	21
Белый	17
Красный	9
Коричневый	10
Синий	15
Зеленый	3

Найдите частоту события:


- а) Пете встретилась синяя машина;
- б) Пете встретилась не черная машина;
- в) Пете встретилась красная или зеленая машина.


Ответ: а) 0,2; б) 0,72; в) 0,16.

Величины, с которыми мы имеем дело в жизни, как правило, изменчивы. Например, рост конкретного человека — изменчивая величина. Ребенок растет, потому что его организм развивается. Рост взрослого человека также непостоянен: он меняется в течение суток в среднем на 1-2 см (при нагрузках на 3 см и больше). Наибольший рост будет сразу после сна. За день, пока человек стоит, ходит и сидит, межпозвоночные диски оседают, и рост уменьшается, а за ночь позвоночник снова растягивается.

Изменчивой величиной является время пути от дома до школы каждого школьника, курс валюты, вес плитки шоколада, температура воздуха и т.д. Причины изменчивости чаще всего известны нам лишь частично или неизвестны вовсе. Поэтому, говоря об изменчивости, часто добавляют прилагательное случайная. Случайная изменчивость — непостоянство величины, обусловленное действием случайных причин (факторов), часть из которых может быть неизвестна.

Пример 1. На рисунке 1 показано онлайн-табло авиарейсов, следующих по направлению Москва — Санкт-Петербург, с одного из

С Есть

Есть дополнительные материалы на сайте raum.math.ru.

сайтов. Продолжительность разных рейсов (время в пути) существенно различается. Обсудите с учениками изменчивость времени полета самолета и ее возможные причины.

Желательный результат обсуждения

Время полета колеблется от 1 ч 20 мин до 1 ч 50 мин и зависит от множества факторов. Самолеты вылетают из разных аэропортов. Шереметьево находится несколько ближе к Санкт-Петербургу, чем Домодедово и Внуково. Кроме того, траектория, по которой летит самолет, не постоянна — она меняется в зависимости от ветра и движения других самолетов. Поэтому расстояния, которые преодолевают самолеты, даже вылетающие из одного аэропорта, отличаются. На рисунке 2 представлены разные траектории полета самолета по маршруту Внуково — Пулково.

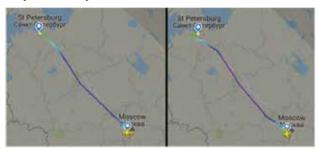


Рис. 2

Следует упомянуть, что в реальности время полета отличается от запланированного. И вообще не очень понятно, что такое «время полета». Время от момента закрытия до момента открытия дверей? Или от начала до конца движения самолета? Или от взлета до посадки? В разных авиакомпаниях и разных аэропортах мира время полета считается по-разному. Бывает так, что в расписании указано, что время полета от Москвы до Санкт-Петербурга 1 ч 30 минут, а капитан воздушного судна объявляет, что время полета составит 50 минут. Для экипажа и для наземных служб время полета тоже разное.

Самолет тратит время на руление перед взлетом и после приземления. Кроме того, перед самим взлетом пилот ожидает разрешения диспетчера. Зимой некоторое время уходит на противогололедную обработку взлетно-посадочной полосы. В результате самолет находится в воздухе гораздо меньше времени, чем указано в расписании полета.

Например, рейс UTA383 компании «Utair» ежедневно вылетает из Москвы (Внуково) в Санкт-Петербург. По расписанию вылет в 19:00, а посадка в 20:30. В таблице на рисунке 3 показаны данные о времени перелета (с момента взлета до посадки) этого рейса в течении

недели, с 8 по 14 января 2019 г. Обратите внимание учеников, что продолжительность полета (последняя колонка) отличается от заявленного в расписании и меняется день ото дня.

14 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B735 (VQ-BPO)	1:04
13 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B735 (vq-aju)	1:10
12 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B735 (vq-8jt)	1:02
11 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B735 (vq-8jL)	1:08
10 Jan 2019	Moscow (vko)	St. Petersburg (LED)	-	1:03
09 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B734 (vq-Big)	1:05
08 Jan 2019	Moscow (vko)	St. Petersburg (LED)	B735 (VP-BXQ)	1:04

Рис. 3

Пример 2. Изменчивость лежит в основе эволюционной теории, выдвинутой Чарльзом Дарвином. Движущими силами эволюции считаются наследственность, изменчивость и естественный отбор. Примером эволюционной изменчивости является масса мозга человека. За 3 млн лет эволюции масса мозга человека выросла примерно в 3 раза. Масса мозга современного человека составляет в среднем около 2% массы тела, и этот процент в среднем практически не меняется последние тысячелетия, хотя у разных людей доля массы мозга колеблется (рис. 4).

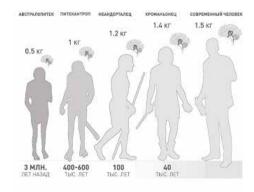


Рис. 4

Рост человека — величина, подверженная гораздо большей изменчивости, чем масса мозга. В процессе эволюции человек становится все выше и выше. За последние 200 лет мужчины выросли в среднем примерно на 10 см, а женщины — на 9,3 см. Это явление наблюдается практически во всех странах. Увеличение роста связывается с улучшением условий жизни, повышением качества питания, прогрессом в медицине: благодаря прививкам дети реже переносят заболевания, задерживающие рост. Однако никто не может точно сказать, почему и каким именно образом эти (и другие) факторы влияют на рост.

Пример 3. На упаковках продуктовых товаров всегда указывается номинальная масса (например, пачка сливочного масла обычно 200 г, шоколадный батончик — 50 г, йогурт — 150 г, мыло — 90 г) или номинальный объем (молоко -1 л, соевый соус -150 мл, шампунь -280 мл). Это совсем не значит, что масса (или объем) будет в точности соответствовать номиналу. Количество товара в упаковке — величина, подверженная случайной изменчивости. Отклонения от нормы происходят из-за износа и плохой настройки оборудования, неоднородности сырья и множества других факторов. Номинальная масса — значение, к которому стремится производство. Товар, имеющий массу, сильно отличающуюся от номинала, считается бракованным. Допустимое отклонение зависит от типа товара, а также от принятых стандартов качества на производстве.

Предложите учащимся выполнить задания из учебника.

Задача из учебника. На обертке обычного шоколадного батончика написано, что его масса 50 граммов. Это — номинальная масса или *номинальный вес*. Ребята купили десять батончиков и взвесили их. Они получили следующие 10 значений (в граммах):

Только один батончик весил в точности 50 г. Некоторые батончики весили больше, другие — меньше. В ряде случаев отклонения превышали 1,5 г.

Чтобы понять, всегда ли наблюдается такое явление, ребята купили и взвесили еще одну партию из десяти батончиков. Вот какие значения (в граммах) они получили для второй партии:

Задания № 7-13 (с. 66)

- **7**. Найдите наибольший и наименьший вес взвешенных шоколадных батончиков в первой партии.
- **8.** Найдите наибольшее абсолютное отклонение от номинального веса батончика в первой партии.
- 9. Найдите средний вес шоколадного батончика в первой партии. Убедитесь, что он мало отличается от $50 \, \mathrm{r}$.
- **10.** Найдите средний вес батончика во второй партии.
- **11.** Убедитесь, что средний вес батончиков в первой и во второй партиях мало отличаются друг от друга и от номинального веса.
- 12. Сколько в каждой партии батончиков, вес которых превышает 50 г? Сколько таких батончиков в обеих партиях? Какую долю и какой пропент они составляют?
- 13. Вес батончика, который вы покупаете, может быть больше или меньше номинального. Можно ли считать, что шансы этих событий равны, если судить по результатам наших взвешиваний?

Желательный результат обсуждения

Для решения заданий предложите школьникам составить таблицу, в которую они запишут вес батончиков в обеих партиях. Посоветуйте закрасить в таблице ячейки, где масса батончика выше номинальной, одним цветом, а другим те, где ниже.

В каждой партии половина батончиков имеют массу меньше номинальной. Только один батончик весит ровно 50 г. Частота события «масса ниже номинальной» равна 0,5, а событие «масса выше номинальной» имеет частоту 0,45. Таким образом, медиана данных близка к номинальной массе: шансы купить батончик легче или тяжелее номинала примерно одинаковые.

Обратим внимание на средний вес в каждой партии и в обеих партиях вместе. Средний вес в первой партии 49,89 г, во второй — 50,13 г, а в двух партиях вместе 50,01 г. Такие малые от-

	1-я партия	Отклонение	2-я партия	Отклонение
	49,1	0,9	49,7	0,3
	50,0	0	48,8	1,2
	49,7	0,3	51,4	1,4
	50,5	0,5	49,1	0,9
	48,1	1,9	49,6	0,4
	50,3	0,3	50,9	0,9
	49,7	0,3	48,5	1,5
	51,6	1,6	52,0	2,0
	49,8	0,2	50,7	0,7
	50,1	0,1	50,6	0,6
Наименьший вес	48,1		48,5	
Наибольший вес	51,6		52,0	
Средний вес	49,89		50,13	

личия от 50 г говорят о том, что изменчивость вызвана, скорее всего, *случайными отклонениями (погрешностями, ошибками)* (в производстве, в наших измерениях), а *систематическое отклонение* крайне мало или отсутствует.

Пример 4. (С. 63 учебника) В России номинальное напряжение в бытовых электросетях 220 В. Возьмем бытовой вольтметр и будем измерять напряжение в розетке через каждые 10—15 секунд на протяжении нескольких минут. Полученные данные запишем в таблицу.

225	227	225	228	225
228	218	217	218	220
223	225	216	222	224
220	218	221	220	216
214	219	231	228	227

Судя по данным случайных измерений, напряжение сети — изменчивая величина. Размах значений в наших измерениях получился 17 В. Причины изменчивости — включение и выключение электроприборов в соседних квартирах или домах. Кроме того, возможны колебания напряжения, приходящего на районную энергоподстанцию, связанные с нагревом трансформаторов и даже с погодными условиями. Изменчивость напряжения зависит и от качества энергосети в целом: от работы стабилизаторов, износа оборудования и так далее.

Желательный результат обсуждения

Предложите учащимся найти частоту случаев, когда напряжение в сети больше номинального (выделено желтым в таблице выше). Из 25 записанных данных 14 значений превышают номинал (частота равна 0,56) — это около половины.

Среднее значение равно 222,2 В. Отличие среднего от номинального значения 220 В мало (около 1%). Можно предположить, что систематического отклонения в измерениях нет. Рассеивание результатов измерений — следствие случайных отклонений, причины которых обсуждались ранее.

В последних двух примерах речь шла о разных изменчивых величинах: массе шоколадных батончиков и напряжении в электросети. Однако в обоих случаях полученные значения группируются вокруг номинального. В обоих случаях медиана данных и среднее значение близки к номинальному. Если в массовом производстве среднее значение величины (массы, напряжения и т.п.) сильно отличается от номинального значения, то говорят о большом систематическом отклонении. В этом случае оборудование требует ремонта или наладки. Небольшие случайные отклонения приводят к рассеиванию зна-

чений, но они обычно слабо влияют на среднее (часть отклонений положительна, примерно такая же часть отрицательна, и они компенсируют друг друга).

Выводы

В жизни в основном мы имеем дело с изменчивыми величинами. Чаще всего причины изменчивости известны лишь частично. Поэтому мы говорим о случайной изменчивости. Изменчивость проявляется повсеместно: в биологии, в производстве товаров и даже в повседневной жизни. В производстве или при измерениях изменчивость часто связана с проявлением ошибок или отклонений — систематических и случайных. Систематическая ошибка не создает разброса данных, но приводит к значительному отличию среднего значения от номинального (массы, объема, напряжения в сети и т.п.). Случайные ошибки разнонаправленны — они дают отклонения то в меньшую, то в большую сторону, компенсируя друг друга. Поэтому случайные ошибки создают рассеивание значений, но мало влияют на среднее.

Рекомендуемое домашнее задание

Задача. В таблице представлены данные об урожайности зерновых культур в России с 1992 по 2018 г. в весе (ц /га) после доработки.

Год	1992	1993	1994	1995	1996	1997	1998	1999	2000
Урожай- ность	18,0	17,1	15,3	13,1	14,9	17,8	12,9	14,4	15,6
Год	2001	2002	2003	2004	2005	2006	2007	2008	2009
Урожай- ность	19,4	19,6	17,8	18,8	18,5	18,9	19,8	23,8	22,7
Год	2010	2011	2012	2013	2014	2015	2016	2017	2018
Урожай- ность	18,3	22,4	18,3	22,0	24,1	24,7	27,4	29,7	25,5

- а) Является ли урожайность зерновых культур в разные годы постоянной величиной?
- б) Какие причины могут влиять на урожайность? Какие из этих факторов можно назвать случайными?
- в) По данным таблицы постройте столбиковую диаграмму.
- г) Вычислите среднюю урожайность зерновых в период: 1992–2000 гг., 2001–2009 гг., 2010–2018 гг. Сравните между собой полученные результаты.
- д) Составьте таблицу отклонений ежегодной урожайности в 1992–2000 гг., 2001–2009 гг., 2010–2018 гг. от средней урожайности за соответствующие девятилетние периоды. Сравните дисперсии этих периодов.
- е) Что больше подвержено изменчивости: средняя урожайность за девять последовательных лет или урожайность в отдельные годы?